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A necessary and sufficient condition for polynomials defined on some (proper or
improper) linear manifolds on IR.k is given in order that they agree there with the
traces of a polynomial on IRk (see H. A. Hakopian and A. A. Sahakian, in
"Abstracts, International Workshop on Multivariate Interpolation and Approxima­
tion, Duisburg, 1989"). An inductive construction of this interpolating polynomial
is obtained. The analogous interpolation on the sphere and with homogeneous
polynomials is also presented, and some connections with other multivariate and
finite element interpolations are explored. \: 1995 Academic Press, Inc.

O. INTRODUCTION

We are interested in interpolating to polynomials given on (k - s)­
dimensional linear manifolds obtainable as the intersection of hyperplanes
from a given (multi)set .Yf of hyperplanes in IRk. We treat this problem
in full generality, taking account of multiplicities by the corresponding
matching of derivative information and also taking account of information
at infinity in case of empty intersection of the corresponding hyperplanes.

We give necessary and sufficient conditions, in terms of consistency of
the given data, for the existence and uniqueness of an interpolant from
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the space of polynomials on [Rk of total degree ~ n, or from the space

JI': = JI':([Rk)

of homogeneous polynomials of degree n, under the assumption that the
data intended to prescribe some derivative of order r on some linear
manifold are indeed in the form of a polynomial of degree ~ n - r.

We start with some multivariate notation. Let IX = (lXI, ••. , O(k), P=
(fJl, ...,PdE71.: be multi-indices, and let x=(xl, ..·,xd, Y=(Yl, ...,YdE
[Rk be k-vectors. Then we define

IX' := (lXI' ... , IX k _ I)'

X~ :=x~J "'X~k,

The notation IX ~ Pmeans that (Xi ~ Pi for i = 1, ..., k.
For PE JIn and i= 1, ... , n, we denote by p[i] the homogeneous compo­

nent of P of degree i; hence, we have

P= I pCi],
i=O

pCi] E JI':.

Let D, be the directional derivative along y:

k i3
D,:= L Yi;;-'

i~ lUX;

More generally, for any sequence Y= (y l
, ... , y m

) in [Rk and corresponding
multi-index 0( E 71.':, we set

We also use

for PEJIn and i=O, ...,n.

Note that the definition of D~] depends on the integer n which specifies in
which polynomial space we seek the interpolant.

Now let Yf be a given multiset of hyperplanes in [Rk. This means that
each H is of the form

for some nonzero k-vector nH and some number bH . Note that we do not
exclude here the possibility of repetitions. For HE Yf, we denote by HO the
(k - 1)-dimensional subspace parallel to H, i.e.,

HO:= {XE[Rk:nH·x=O}.
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We denote by
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fE = fEx

the collection of all linear manifolds obtainable as intersections of hyper­
planes from £ and include here even linear manifolds corresponding to
empty intersections, i.e., having only improper points in a manner to be
made clear in a moment. Thus, AE fE if and only if

A=A.#:= n H
HE .#

for some ..,It S £. For AE fE, we denote by A° its improper part and mean
by that the linear subspace

)"0 = )"~#:= n HO
HE .#

parallel to it. (The possibility that A= ,1° is, of course, not excluded.)
We call A proper in case Ai= 0, and call it improper otherwise. Further,

the expression "manifold" will always mean "proper or improper linear
manifold."

Consideration of improper manifolds requires some care when it comes
to containment. For )"1' ,12 E fE, we write

)'1 <,12

and say that A1 is contained in A2 exactly when

and

Consequently, we identify ,11 and A2 exactly when

and

In particular, we identify two improper hyperplanes exactly when their
improper parts coincide.

We classify manifolds by their dimension, defined as follows:

d' A'= {dim ,10,
1m . dim A°- 1,

if Ais proper,

if A is improper.

Now we obtain the nice relation which also is a motivation for the above
classification,

. {dim)",
dlm(,1 n H) = d' , 11m A.- ,

for any AEfE and any HE£.

if ,1<H,

otherwise,
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For a proper manifold A, we denote by;"", the improper manifold for
which (ACXJ)O = ..1.0. A", is the unique improper manifold of dimension
dim A-I contained in A(but need not be in .2").

We write

.2"S = .2"~ := {A E.2": dim A= k - s}

for the collection of all manifolds in .2" of codimension s. In particular,

The multiplicity of AE.2" plays a central role. It is, by definition, the
cardinality of the multiset

~.:= {HEYf: A<H}.

Let AE .2"S. Then # ~:;::: s, with # ~ = s referred to as the simple case. In
any case, we intend to prescribe on each ;. E .2"s all derivatives in IRk normal
to A and of order :::; ( # ~ - s).

Moreover, in the inductive proof we wiIl deal with the situation when IRk

is replaced by some manifold A containing A.. For this purpose, we choose
for

m := dim A - dim A,

some orthonormal coordinate system

for the orthogonal complement of AO in AO, which we will also denote by

If IY. E Z,:, then D~~(A) is, so far, only defined when mo= m, i.e., when both
A and A are of the same type, i.e., both proper or both improper. In the
contrary case, i.e., when ;. is improper and A is proper, then mo = m - 1,
and then we define

D o . DO' D [Om]
;-"(A)'= ;.~(A) CXJ , if mo=m-l.

(Since ).< A, the case A proper and A improper cannot occur.)
In the following, we will omit in the above and other notation the

manifold A iff A = IRk.
For proper ), E .2", we denote by
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the space of all polynomials of degree ~n on Ie in the coordinates with
respect to any particular coordinate system on A. Correspondingly,

II /~ (ic)

is the subspace of II,,().) of all homogeneous polynomials of degree n on A.
In order to fix the latter class of polynomials, we choose the projection

of the origin 0 E IRk into ). as the coordinate origin on A.
For improper )., we take

We also put IIA).) = IR in case A. is a point.
For PE II", PI,; denotes the trace of P on ). in case A is proper. For an

improper )., we define

For proper I E~, we denote by

and

the respective classes of polynomials on ). with coefficients in IIm(l) for
some m. For a proper Ie ~ A, there corresponds in a natural way to any
P E II,,( A) an element of II,,(A, Ie -l( A)), which we will denote by

(0.1 )

I. CONSISTENCY OF THE DATA

Suppose ffs # 0 for some fixed s, I ~ s ~ k. Consider the following
sequence of polynomials:

This sequence will serve as data on the manifolds in ff', which means the
interpolation problem is to find a polynomial P E II" such that

V(Ie, 0:) E dom [2', (l.I )

where dom :!l' denotes the set of all index pairs ()., 0:) in the definition of
:!l' and, to recall, A-l = ).-l(lRk

). In effect, we want to recover P from its
traces and the traces of some of its derivatives on all the manifolds in ffS.
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If s = 0, there is nothing to do, since .@~ has just one term, corre­
sponding to the unique pair, (IRk, 0), in its domain; hence, P= PiRk,o is the
solution. For s > 0, we carry out this recovery one dimension at a time,
obtaining from the given data ~s a corresponding polynomial sequence
.@~- 1, then a corresponding .@~--; 2, and so on, until we have constructed
the corresponding .@~ and thereby the desired P. This means that it is
sufficient to consider the problem of extending the given data from the
manifolds in ifS to the manifolds in ifS - I, thereby constructing ~S - 1 from
.@S. For this, we make use of the fact that, if there is a polynomial P
satisfying (1.1), then the polynomials in the corresponding sequence .@s. I

satisfy

I;f(A, fJ) Edom .@<-J. (1,2 )

At this point, we can easily obtain some information about the polynomials
in @S' I. In particular, we can easily find the polynomials

P f3 '-DJ P I;.. A,J·- ).l(A) A.f3)' j == O...., # JIt,l- s -lfJI, (1.3)

for arbitrary proper manifolds A~ A, AE ifs and (A, fJ) Edom @s- '. In
fact,

P~,A,J= I C,P;','f'

)' E z~, 1,1 ~ IPI + J

where the coefficients c), are to be found from the relation

(1.4)

If the above A is improper, which in this case means that). == A w' then we
can determine the polynomials

P fl '- D[J]P
A:;r:,/1,j·- Cf:-' A,P' j=o, ..., #~ -s-IPI, (1.5 )

using the equation

fJ _ (a A P" P
PA"A,j- I (y'_P),PAx ,.,,(·-a,l). (1.6)

)'EZ'+,I)'I~I{JI+J •

where

hence, the vector aA lies in A 1..

Fix now any particular index (A, p)Edom ~s-' with a proper A, and
consider the task of combining the information obtained about PA,f1 into
an appropriate data sequence.
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We associate with (.1,13) the following collection of manifolds:

v = S, S + 1.

The collection 2'S(A) can contain at most one improper element, viz., A c£.

In any case, we set

fl):= #£,;. -S+ 1-1131 + 1,

and

if A ex; E 2'\(.1),

otherwise.

The "multiplicity" fl;. is related to the upper limit of j in (1.3) or in (1.5).
Next we set

fl,:= #(~\~),

fl(A) := I fl"
AE .'/"(,1)

and, for IE 2's+ I,

m A := #~-(s-l)-lpl,

fl(A):= I fli'
AE .'/"lA)

11,(.1):= L 11)= # (.Yt;\YfA ),

I.EY';(A)

Note that

fl,(A) := I Ill.'
;,EY~(AI

), E 2'S(A).

We now consider the data on manifolds in 2'S(A), i.e., the polynomial
sequence

where p,.}:= P~.A.i' and let

be a unit normal for ), in A.
The interpolation problem here is to find qEfln(A) (which is supposed to

be P A • fl , see (1.3» such that

D~,ql)=P;'.j' V(Je, j) E dom'2i s
•fJ (A). (I.7)

This problem is much simpler than the problem (l.l). Indeed, the multi­
index CJ. and the system A. ~ of vectors in (l.t) are replaced here by the
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nonnegative integer j and the single vector n;.. In effect, we have here the
case of codimension one since the codimension of the manifolds ). E il'S(A)
in A is one.

Essentially, the method we use in this paper is to reduce the problem
(1.1) to a number of problems of type (1.7), i.e., to problems of codimen­
sion one.

In order for the problem (1.7) (or (1.1» to be solvable, the given data
sequence must satisfy some consistency conditions, which we now discuss.
Roughly speaking, if

1=)'jn)'2

for some AI, A2 E .,PS(A), then the data sequence provides information
about the behavior on 1 in two different ways; hence, a solution can exist
only if these two sources do not contradict each other.

For example, if 1 is proper, then, of course, problem (1.7) cannot be
solvable unless

This is the essence of consistency condition (a) below.
The second consistency condition, (b), concerns the case of improper I

(i.e., the case when AI and A2 are parallel) and guarantees, for instance, the
relation

P rO] _ prO] ( -00 )
;",j- h.j·+ ;., ;.2'

The third consistency condition, (c), arises only if A ex E "pS( A) and is
similar to condition (b). In order to present the consistency conditions in
full generality, we set

U A := (/1 + S + 1- #£)+ signum(mA ),

and, for IE"ps + 1,

v/(A) := min{w, J.l,(A) - 2},

where

DEFINITION 1.1. For 0 < s < k, proper A E .,ps~ 1, and pE Zs+- I with
IPI ~ #~ - s + 1, we say that the derived sequence E2S,P(A) is consistent at
A if it satisfies the following three conditions:

(a) For every proper I E"pH I(A), there exist polynomials

v= 0, ..., VI ( A ),
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satisfying the relation
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Vi
Di QIi (t)---'_D v Jp I;,; ,,v -(v-j)! I ;.,j" (1.8 )

for ).E!l'~(A),j=O, ...,min{v,Il;-l}, and tEAOnl.L(A).

(b) For every improper IE !l"+ '(A), there exist polynomials

v=O, ..., v,(A),

(1.9)

satisfying the relation

DjQIi()-(D[V-np)( )
n). '.1' t - Cf. ; •• j ·+a;.

for each proper AE!l'; (A), j = 0, ..., min {v, 11;. - 1}, and tEA n I J.(A).

(c) If J. = A Xj E!l''' then the polynomials Qt. defined in (b) satisfy
the conditions

(1.10)

for 0 ~ j ~ v < 11" - I.

Remark 1.1.1. It is not hard to check that conditions (a), (b), (c) are
necessary for interpolation problem (1.1) to be solvable. Indeed, if there
exists a polynomial P E Il" satisfying (1.1 ), then the polynomials Qf. v can be
chosen as follows:

In case (a),

to check (1.8), it is enough to use the relation

with F(x):= D:'j.
In cases (b) and (c) (see (0.1)),

Qil = D[v]/,o(t)
~v ~, ,

where/:= D~LPIA'

Remark 1.1.2. It is evident that all the interpolating parameters on the
right-hand sides of (1.8) and (1.9) (for fixed v) are uniquely determined by
v+ 1 Hermitian parameters from among them. This follows by univariate
Hermite interpolation (on the line in case (b) and on the circle by
homogeneous polynomials in case (a); see Theorem 4.2 below for k = 1).

This also makes clear that conditions (1.8) and (1.9) do not impose any
restriction in the case v> 1l,(A) - 2.
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DEFINITION 1.2. We say that £0S,P(A) is fully consistent if condition (c)
holds and conditions (a) and (b) hold for v=0"",/-l,(A)-2, i.e.,
vI ( A ) ;?; ,uI ( A ) - 2.

Let us now consider the case s = k (pointwise interpolation).

DEFINITION 1.3. For A E 2!k - I a proper line with directional unit
vector dA , and PE Zk+-l with IPI ~ ~ - k + 1, we will say that the derived
sequence £0k. J1(A) (of numbers) is consistent at A if either /-l( A ) ~ n + 1- 1/31
or

(d) there exists a polynomial PA •pElln -l'
c
r-lp,(A) satisfying

for j = 0, ... , /-l;. - 1 and every proper A. E 2!k(A), where

I'xe -1

P- '- ~ pP
A.P·- L.. Axe.\"

v=o

(1.11)

(1.12)

Note that in this case P;'.0 E IR and the number of conditions in (1.11)
equals ,u(A)-/-loc. Hence for ,u(A)~n+ 1-1/31, by Hermite interpolation,
there exists a polynomial PA.p (unique in case /-l(A) = n + 1 - IPI) satisfying
the conditions (1.11). It is clear that the polynomial

has the following properties:

and

for (A,j)Edom £0 k ,P(A) and proper )., (1.13)

(p* )[n-j]=pfJ .
A.P A oc,,;

for j = 0, .." ,uX! - 1. (1.14)

Remark 1.3.1. The necessity of condition (d) for interpolation problem
(1.1 ) to be solvable is evident. The choice in this case is

We handle the definition of consistency for an improper A by reducing
it to the proper case as follows. Let 2 ~ s ~ k and let A E 2!S - I be improper,
Set
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and note that there are no improper manifolds in ff'.wo. Consider the
following sequence of polynomials on manifolds in ff~o:

DEFINITION 1.4. For an improper A E ffs - 1, we say that the derived
sequence f0s,P(A) is consistent if the sequence f0~(AO) is consistent at AO,
which in this case is equivalent to condition (a) only,

DEFINITION 1.5. We say that the data sequence f?jJS is consistent if, for
each A E ffs - 1 and each 13 E 7L s+- I with I131 ~ # Yf'A - (s - 1), the derived
sequence f0 s.fJ (A) is consistent at A.

2. THE MAIN THEOREM AND THE CASE S = 1

THEOREM 2.1. Let f?jJs = f?jJ'.w, be the polynomial sequence introduced
earlier, for some 1~ s ~ k. A necessary and sufficient condition for the
existence of a polynomial PE Iln(~k) such that

for all (2, a) E dom f?jJS

is the consistency of f0S.
The polynomial P is unique iff # Yf' ? n + s.

Our next purpose is to complete the proof of Theorem 2.1 in the case
s = 1, k> 1 (the case k = 1 reduces to Lagrange-Hermite univariate inter­
polation).

Let

where we assume that HI = L 1 , •••, HJ-l = L r (the distinct hyperplanes L;
occur in Yf' with respective multiplicities /.l; and have unit normals n;), and
let

f0(Yf'):= f0~ = (P;./J=O, ..., /.l;-I, i= 1, ..., r).

(Here we have /.loo =0.)
Actually, in this case of s = 1, we will discuss a more general setting,

namely, we put

fJ-;=:ji.;+m, i= 1, ..., r,
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where m is an arbitrary integer with O:;(m <mint,,;;,,;r J.li and, corre­
spondingly,

u:= (n+2-ji-m)+ ·signumm,
r

with ji:= L jii'
1"= 1

THEOREM 2.2. Let ~(Yl') be consistent (i.e., conditions (a), (b) with
A = ~\ s = 1, and fJ =°hold). Then there exists a polynomial P E lln(~k)

such that

V(i, j) E dom ~(Yl'). (2.1 )

The polynomial P is unique iff J.l ~ n + 1.

Proof The uniqueness of the polynomial P in the case J.l ~ n + 1 follows
from the following well-known Lemma 2.3 (see, for example, [3]). Here
and below, we denote by p(x, L) the signed distance of x E ~k from the
proper hyperplane L in ~k; in particular, L = {x E ~k: p(x, L) = O}.

LEMMA 2.3. Let Q E IInand

D{.LQIL=O, for j = 0, ..., v-I.

Q=p(., L)' q.

On the other hand, if J.l:;( v, then the polynomial TIHE.>l'P(·, H) E ll,,(~k)

satisfies condition (2.1) with all Pi,j = 0, which means that the polynomial
P satisfying (2.1) is not unique.

Let us now construct the interpolating polynomial P in the case s = 1.
We first consider the case J.l :;( n + 1. Here we have

u= (n+ 2 - ji -m)· signum m,

since J.l = ji + rm ~ ji + m. This in the case m ~ 1 implies

ji(l) + m + u - 2 = ji(l) + n - ji ~ ji(l) + J.l- ji - 1~ ji(l) + rm - I ~ J.l(l) - I

and therefore ~(Yl') is fully consistent at ~k.

For proper L in ~k of dimension k - 1 and q E 1l,,(L) we denote by if the
polynomial from ll" satisfying the conditions

640i80/l-5
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Let us prove, by induction on Il, that there exist polynomials
q,Efln ;+1' i=I,···,fl, such that the polynomial (cf. [2])

satisfies condition (2.1).
For fl=1 we put P1=ql=i\0. Let ql, ...,ql'-l be known and PI'-l

satisfy the conditions

D{"Pl'lILj=P i.;, i=I, ...,r; j=0, ...,fli-1; (i,j)#(r,flr-1). (2.2)

It is enough to find a polynomial qll E fl" I' + I (IRk) such that

D~;-I[Pi'-1+p(-, Hd· ... . p(., Hil-d·ql'][L,=Pr,II,-t. (2.3)

It is clear that

D~;-'[p(.,Hd·· ... p(., HI'-d·q,JIL,

= (Ilr-1)! [qp.. 'iY p(., HJJj ,
t= 1 L r

Hi#HJ1.

and therefore (2.3) reduces to

(flr_l)l[ql'·l'nl P(.,HJJI =P,.",_I-D::; IPI1 IlL" (2.4)
1= 1 L,

Hi#Hi1

Let

10 := {i: I ~i~fl, H7=H~, H;#HI'L

/ 1 := {i: I ~i~fl, H7#H~L

i= 0, 1.

Now condition (b) of full consistency of 2?(£') at IRk, Remark 1.1.2, and
the induction hypothesis yield

Indeed, according to (1.9) for v = 0, ... , Do + fl, - 2, and Remark 1.1.2, the
<5 0 upper homogeneous components of P r,I"- J are uniquely determined by
means of quantities on the right-hand side of (2.2). On the other hand, the
polynomial
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has the same 15 0 upper components, because of the necessity of conditions
(1.9) (see Remark 1.1.1) and (2.2). Let us denote

f . . } _. {II Ir ,}tLj"L!'.IEI[ -. , ..., ,
VI Vr'

r'

According to condition (a) of consistency and (2.2), as in the previous case,
we have

J=O, ..., vj -l, i= 1, ..., r'.

Hence by Lemma 2.3 we get the factorization

(P"!'.-J-D~;-JPIJ-[]k=[qnPV,(.,lj)JI =[qn P(.,HJJI '
1= 1 L, lEI, L r

where qElln-IJ+1(L,) since bo+b[ +11,=11.
It is evident that we will have (2.4), taking qlJ = (l/c)q, where

C=(I1,-I)l[n p(., Hj)JI =const.
IE /0 L,

Let us now consider the case 11 ~ n + 2. We start by choosing a
subcollection

L aj=n+ 1,
i= 1

such that

i = I, ..., r if p ~ n + I (case I),

and

i = I, ..., r if fi ~ n + 1 (case 2),

Let us check that the polynomial sequence £?(£) is fully consistent at IRk.
This is obvious in case 1. For case 2 it is enough to note that

L (ai-fiJ=n+l-p<m+u,
;= I

sInce

(i) if u = 0, i.e., n + 2 - p- m ~ 0, we have n + 1 - fi ~ 112 - 1,

(ii) if u "" 0, i.e., n + 2 - fi - m = u, we have n + 1 - P= 112 + u- l.
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Hence E2(.it) is fully consistent at IRk and using the previous construction
we can find a polynomial PE IIn satisfying the conditions

DJ PIL =p.
nj I ',J' J=O, ..., (J;-I, i= 1, ..., r.

Let us prove that P is the desired polynomial, i.e., conditions (2.1) are
satisfied with P = P. Let

(r, j) E dom E2(£),

Assume that (induction on io)

i=O, ···,Jo-I

Let us define for .it similar to the case of £:

/0 :=lon {i: H;E.it},

/1 := II n {i: HjE it},

;So:= #/0'

;S1 := #/1.

Then by condition (b) of consistency of E2(£), we have that

where

Exactly we have

or 1] = L Jlj + (Jlr + m + u - io - 1).
iE 10

(2.5)

in case 2.

This follows from the fact that in the case 1 the subcollection

{
L 1 Lr-l L r }
(J 1 ' ••. , (J r_ 1 ' io + 1

is fully consistent, since

io + 1 - Jlr ~ Jlr - Jlr = m,

and in case 2 above, the subcollection is fully consistent iff

L «(J;-Jlj)+io+I-Jlr~m+u.
JETo
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Let us denote now

65

ro

I (i=3'I,

i= 1

and ni = 7t (H!'), i = 1, ..., roo Then (2.5) and the consistency of @(JrO) imply

where for ~ := L:;~ 1 (i we have

J=O, ..., ~i-1, i= 1, ..., ro,

or ~ ~ L iii + (iir + m + u - Jo - 1).
iE 71

Now it is not hard to check that

,,+~= I O"i+ L O"i=n+1-O"r
iE70 iElI

or

11 + (= I iii + I iii + (j1r + m + u - )0 - 1) = j1 +m + u - )0 - 1.
iElO jE71

This combined with (i) and (ii) implies

" + ~ ~ n + 1- )0,

The latter in its turn yields

Thus the proof of the Theorem 2.2 is complete. I

Repeating the proof of Theorem 2.2 for a particular case we get

COROLLARY 2.4. Let the hyperplanes in Yf all be proper and contain the
origin, i.e., JrO = Yfo, and polynomials of ~(Yf) all be homogeneous:

(i, j) E dam ~(Yl').

Then there exists P E II:' (IRk) satisfving condition (2.1) if and only if ~(Yf)
is consistent (which in this situation reduces to condition (a) for s = 1,
A = IRk, and p=O).

The polynomial P is unique iff J1 ~ n + 1.

640'RO/l-6
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3. THE PROOF OF THE MAIN THEOREM

We will prove the sufficiency part of Theorem 2.1 by induction on n + k.
In the case !1 < n + s we start by adding a hyperplane L to the collection
ff and polynomials on manifolds in !£"(L, .Yf u {L}) to the sequence .@.~,

such that the resulting polynomial sequence is still consistent. We choose
the additional hyperplane L such that

(i) L does not contain any point from !£'k,
(ii) !£,k - J n L consists only of proper points.

In the case s = k we define values and corresponding derivatives of desired
polynomials on (proper) points of !£"(L, .Yf u {L} ) arbitrarily. Now let

The above assumption then implies that 1=). n ).', with A. E !£". We first
define polynomials on I as

i~ #2?; -5, (3.1 )

where coefficients cj., are found from the relation

In the case 5 ~ k - 2 the consistency on A of polynomials just defined
clearly follows from the consistency of .@~>f' while for 5 = k - 1 consistency
condition (d) coincides with univariate Hermite interpolation by poly­
nomials of degree ~n with !l + 1 - (k - 1) ~ n parameters. Hence by
induction we can define a polynomial P X.o E Il,,(A') such that

forall IE!f'+I(),',.Yfu{L}).

In its turn, this condition ensures (since (3.1) holds and #!£{ - 5 - I =
# !fA - s for the above I, Ie) full consistency along 1= J. n A and therefore
the consistency in general of the resulting sequence, .@~ u {L} •

Hence we can, without loss of generality, restrict ourselves to the case
!1?; n + s.

Now, on account of Theorem 2.2, to finish the proof it is sufficient to
construct a polynomial sequence !?if'- I = !?if:;: I such that for each
PE /l)fH k

) the following conditions are equivalent:

(I) D~lPIA= P", for all (J., (X) Edom!?ll"

(2) D~lPI A = P'I.{1 for all (A, {3) Edam £Z!s- \.
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We start the construction with the case 1 ~ s ~ k - 1. Let us define
PA.P for (A,p)Edom§jS-l with proper A. If Aoct/:ff", then we find
P,1.P Enn _ IfJl(A) according to Theorem 2.2, by the conditions

for all ()., j) E dom §j',P(A). (3,2 )

In the case A ex; E ff", relation (1.6), on account of (1.5), uniquely deter­
mines the #JtAx -s-IPI + 1 highest homogeneous components of PA,p,
for which we denote the sum by j5A.P' After this, we define the second poly­
nomial PA,pEJIn_#X' +,-1 according to Theorem 2,2, by the conditions

A 'x'

(3.3 )

Relations (3.2) and (3.3) determine PA.P and PA,II uniquely, since in the
first case we have

#ff"(A)~#Jt- #JtA + [#JtA-s+ l-IPI]

= #Jt-s-IPI + 1~n-IPI + 1,

and in the second case

#ff'S(A)~ #Jt - #~x+ [#~ -s+ l-IPI] ~n- #~oc+s.

For the polynomial PA,p := j5A,p + PA,p we have

for all ().,})Edom§j'·P(A). (3.4 )

and

(3.5 )

In the case of improper AEff',-I, 2~s~k, IPI~#~-s+l (then all
.icE ff"(A) are improper too) conditions (3.2) uniquely determine a
homogeneous polynomial of degree n - IPI on A0 according to
Corollary 2.4 since

#ff'S(A)~ #Jt - #~ + [#~ -s+ I-IPI]

= #Jt-s-IPI + 1~n-IPI + 1.

In the case s = k, in addition to the above-mentioned polynomials on
improper hyperplanes, the sequence qJs - 1 consists of additional polyno­
mials on proper hyperplanes:

PA,P := P~,fJ' for (A, fJ) E dom q' - 1 with A proper.
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Now let us check the consistency conditions for .@s-l. Let VESfs - 2 be
proper. Then, for A. E SfS( V), we have order of consistency

(3.6 )

since uv=O. To check condition (a), in view of (1.3), (3.2), and (3.6), we
take

QL(t)= L caP;'.a,
lal ~ v

where the coefficients c, = c,( t) are found from the relation

D fJ D V
-" D'"v" 1- L., Ca I"(V)'

lal = v+ IPI

Condition (b), in view of (3.6), is satisfied with

for improper AE SfS( V),

where

Here, we use relation (3.5) in the case 1 ~ s ~ k - 1, and (1.14) in the case
s = k. Condition (c) follows from relation (3.2) and consistency condition
(b) of'@s if I ~s~k-l, and from relations (1.12), (1.14) if s=k.

In the case of improper V E Sfs - 2, we need only check condition (a) for
'@S(V O), which can be done similarly to the previous case by using relation
(3.6). Now the implication (1)=(2) readily follows from the uniqueness of
.@s- 1, while the opposite implication is ensured by way of construction of
.@s- 1. Indeed, to determine p;". for some (A., rJ.) E dom .@S by means of poly­
nomials from .@s-l, we consider the collection of (s - 1)-dimensional
manifolds ~ n A..L in the space A..L, dim A. .L = s and the interpolation of
degree i ~ p.(l) - s to traces (D: PI;,: tEA..L) obtained with the help of the
polynomials induced on lines {~n A. .L } s - 1.

Obviously the uniqueness condition in Theorem 2.1 is satisfied here,
since it turns into the following inequality:

p.(A.) ~ i + (s - I).

Hence, P;',a is determined uniquely. This finishes the proof of Theorem 2.1. I
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4. INTERPOLATION ON THE SPHERE BY HOMOGENEOUS POLYNOMIALS
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The analog on the sphere of interpolation considered will be obtained by
applying Theorem 2.1 to a collection :?e with :?e =:?e0 and the sequence
!:»s consisting of homogeneous polynomials. This case is much simpler,
since here we deal only with proper objects.

Let S be a sphere in IRk centered at the origin. The spherical manifold of
dimension v, 0 ~ v~ k - 1, is defined as the intersection

Let

H:=HnS, with {O} E H, dim H = v + 1.

if={H:HE:?e}.

By !i: s
, 0 ~ s ~ k - 1, we denote the set of all (k - 1 - s )-dimensional

(spherical) manifolds which are intersections with manifolds from if.
Define

For f defined on S, and y a tangential direction to S, let

D f ·= l' f(·+ t5')- f
.' . 1m ,. 1_0 t

where (. + t5') is the intersection of S and the line between (. + ty) and
the origin. For manifold TeH and multi-index iX=(iX1, ...,iXs)EZ':,
m = dim f! - dim 7,

D'" f'- D aj Dam f
I~(A) .- IhA)'" I;(A) •

Suppose we have the polynomial sequence

.@s:=(PX.aEfln_lz,(X):XE2JS, iXEZs
+, liXl ~ #J'i"x- s ).

Notations and definitions used in this part without special mention are
similar to previous ones despite the simplicity due to the absence of
improper cases.

DEFINITION 4.1. The sequence .@' is said to be consistent if the sequence
!:»s,tJ(A) is consistent at A for every

IPI ~ #~-s+ 1.

The latter in the cases 0 ~ s ~ k - 2 and s = k - 1 means that the following
conditions (a ' ) and (d') hold respectively:
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(a') for every 7E!f'S+ 1(,1) there exist polynomials

satisfying the relation

for .A. E !f';(A), t E ~ n 1.l(A), j= 0, ... , min{ v, J1ie - I}.

(d') if A E .!l'k - 2 and J1 A ~ n + 1 - 113\, then there exists a polynomial
P;1.{JEJln 1111(,1) satisfying for j=0, ...,(J1ie-1-IPI)+, AE!f'k-l(A) the
following relation:

THEOREM 4.2. Let f2s, for some 0 ~ s ~ k - 1, be the given polynomial
sequence. The necessary and sufficient condition for the existence of a
polynomial PE Jln(S) sati~fying

for all 0:, a) E dom f2s,

is the consistency of the sequence ?JJs.
The polynomial P is unique (If J1 ~ n + s.

5. SPECIAL CASES AND CONSEQUENCES

From Theorem 2.1 (with s = k) it is not hard to obtain the following two
pointwise interpolations (s = k), which do not involve any consistency
conditions.

Let Jt' be a collection of hyperplanes with # Jt' = n + k and assume that
!f'k consists of only proper points; i.e., every k hyperplanes from Jt' have
exactly one common (proper) point.

5.1. Chung~ Yao Interpolation (See [1])

Assume that the multiplicity of every point of !f'k equals k, I.e.,
#!f'k=(nt k).

Then for an arbitrary sequence of values

there exists a unique polynomial P E Jln such that
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5.2. Hakopian Interpolation (See [3])

This interpolation, actually, is the generalization of the previous one to
the Hermite case:

For an arbitrary real number sequence

there exists a unique polynomial P E ll" such thaI

D'P(X) = c~ for all (A, IX) E dom ~k.

Of course, on account of Theorem 2.1, one can easily omit the common
restriction of these two interpolations to !l'k with only proper points and
consider the case of improper interpolations, too.

5.3. Tensor-Product Interpolation

Now we choose the collection of distinct hyperplanes

:If = {H;,):j=O, ..., n j , i= 1, ..., k},
k

2: n;=n,
i= ]

where H;.) is given by the equation Xi = a j .).

The only improper points of !l'k are I~'YV' where Ii is ith axis of IRk, and
# £;:x = n - n j • It is not hard to verify that the interpolation conditions of
P Ell" at these improper points fix the coefficients of monomials from
ll"\ll,,, where

n := (n I, ... , nk ).

Therefore, taking these conditions as equal to zero, we obtain:
For an arbitrary sequence of real numbers

there exists a unique polynomial P Ellii such that

for all r:J. E dom T.

Using Theorem 2.1, one can consider mixtures of such interpolations,
too.

For example, if n l + 1 hyperplanes of !l' coincide with the above HI.),
j = 0, ..., n l' and the collection :If \ {H,.J7~ I satisfies the conditions of
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Chung-Yao interpolation, then we get correct interpolation from the
polynomial space

at the proper points of 2'k.

5.4. Finite Element (F-E) Interpolations

Here, we will discuss the cases k = 2 (in detail) and k = 3 of F-E inter­
polation, i.e., interpolations on a triangle :t and a tetrahedron ~.

In (n, v) F-E interpolation (n is degree, v is smoothness), the following
parameters are given in a way to ensure a C-matching (belonging to the
space C) of the interpolant polynomials along the common side of
adjacent elements in a triangulation:

(i) values of the polynomial PEnn and its derivatives (up to order
no) at the vertices of:t (~);

(ii) values of the polynomial and its normal derivatives to the sides
of:t (faces and sides of ~);

(iii) values of the polynomial and its derivatives (up to order c) at an
interior point (center) of ~ (1Jl).

Let us start with the case k = 2. The above setting requires consideration
of interpolation to traces of the polynomial PEnn and its normal
derivatives up to order v on each side of the triangle; i.e., .Yf consists of
three lines, L o' L t , and L z, each of them of multiplicity v + 1, and s = 1.

In this case, the consistency conditions are reduced to (a) at the vertices
of :to Since the interpolating parameters are arbitrary, we must have full
consistency up the derivative order

(5.1 )

at each vertex of triangle. Again, since the values of the parameters are
arbitrary, the above consistency will be guaranteed iff the collection of
interpolation parameters includes values of P and its no derivatives at
vertices of 1Jl. To complete the sequence of parameters, one must supply in
addition the values of P and its normal derivatives at the sides of the
triangle until the unique determination of all traces participating in the
above interpolation.

It is obvious that we have the following necessary condition, too:

2no+ 1~ n. (5.2)
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Therefore, (5.1) and (5.2) imply the following necessary condition for the
regularity of (n, v) F-E interpolation (see [6]):

n ~ 4v + 1. (5.3 )

Moreover, we obtain the general construction of F-E interpolations in the
case k = 2 (cf. [5]). Let

We put

n=3(v+ I)+c; c~ -I, v~O. (5.4)

r:=n+ 1-2(no + 1),

where no satisfies conditions (5.1) and (5.2).
Then we take the parameters of (i) and (iii) and normal derivatives of

order i at i +r points of each side of the triangle, for i = 0, ..., v. One can
easily verify, using Lemma 2.3 and relation (5.4), that the resulting inter­
polation is correctly defined if the number of prescribed parameters is equal
to dim I1n (lR 2

) and that the latter holds iff

or no= 2v+ 1.

Note that the interpolating polynomial P E I1n can be found by the
formula

where PI is determined by the parameters on the sides of ::t according to
Theorem 2.2, and Pc E I1c(1R 2

) is determined by Taylor interpolation using
the parameters at the center:

Thus we obtain that condition (5.3) is necessary and sufficient for the
regularity of (n, v) F-E interpolation on ':to

Some examples are given in Fig. 1, where we denote the values and
derivatives by points and circles, respectively, and (multiple) normal
derivatives by (multiple) arrows.

In the case k = 3, we consider the analogous interpolation to traces on
faces of ~; hence, again s = 1. The analog of (5.1) here is

(5.5 )

where n L is the derivative order of full consistency at each side of the
tetrahedron, obtained from condition (a).

We must look for a plane (n, nd F-E interpolation; therefore, con­
dition (5.3), namely that n ~ 4n I + 1, combined with (5.5) implies that the
condition

n~ 8v + 1

64<J/BO/1- 7
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n=5, v=1,

no =2, c=-1

n=9, I1=2,

no =4, c=O

(the Argyris triangle)

FIGURE 1

n=3. II =:0.

110 =0. c=-1

n=9. I1=1.

110 =4. n t =2.

c=1

FIGURE 2
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is necessary for the existence of 3-space (n, v) F-E interpolation. Condition
(5.4) in this case is replaced by

n=4(v+ 1)+c; c~-I, v~O

and the construction of F-E interpolations is carried out as in the plane.
Some examples are given in Fig. 2. Here, the parameters in the frontal side
and at the center are omitted. Circles (with straight lines) mean derivatives
in faces (in the space) and arrows mean normal derivatives to sides and
faces of '13.
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